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Abstract

This paper describes an application of artificial neural networks (ANNs) to predict the thermal performance of a cooling tower under cross-
wind conditions. A lab experiment on natural draft counter-flow wet cooling tower is conducted on one model tower in order to gather enough
data for training and prediction. The output parameters with high correlation are measured when the cross-wind velocity, circulating water flow
rate and inlet water temperature are changed, respectively. The three-layer back propagation (BP) network model which has one hidden layer is
developed, and the node number in the input layer, hidden layer and output layer are 5, 6 and 3, respectively. The model adopts the improved BP
algorithm, that is, the gradient descent method with momentum. This ANN model demonstrated a good statistical performance with the correlation
coefficient in the range of 0.993–0.999, and the mean square error (MSE) values for the ANN training and predictions were very low relative to
the experimental range. So this ANN model can be used to predict the thermal performance of cooling tower under cross-wind conditions, then
providing the theoretical basis on the research of heat and mass transfer inside cooling tower under cross-wind conditions.
© 2008 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Cooling towers play an important role in the cool-end sys-
tem of power plant, and its cooling capacity can affect the total
power generation capacity directly. The cooling efficiency is
highly sensitive to environmental conditions [1], particularly
for most cases under the cross-wind conditions. However, for
the conventional design of cooling towers, the impact of cross-
wind, which actually exists in most cases, has not been paid
much attention. Therefore, it is really crucial to delve the influ-
ence of cross-wind regarding the heat and mass transfer perfor-
mance of cooling towers.

Many literatures which are related to heat and mass trans-
fer performance of cooling towers under windless conditions,
can be found [2–7], and works on heat and mass transfer per-
formance of cooling towers under cross-wind conditions are
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also done by some researchers [8–11]. In addition, Q. Wei [12],
M.D. Su [13], Du Preez, Kröger [14,15] and Z. Zhai [16] et al.
have researched the effect of cross-wind on heat transfer per-
formance of dry-cooling towers, to some extent. These works
focused on the dry-cooling towers. D.D. Derksen and T.J. Ben-
der [17–19] studied the influence of cross-wind on the heat
transfer performance of wet cooling towers by means of wind
tunnel experiments and numerical calculation. But these works
mentioned in literatures [17–19] did not make an agreement
with the geometry similarity and dynamic similarity between
model tower and prototype tower.

As seen from the above summary, very few researchers stud-
ied the cross-wind influence on heat and mass transfer char-
acteristic of Natural Draft Counter-flow Wet Cooling Tower
(NDWCT). In fact, many parameters affect heat and mass trans-
fer characteristic of NDWCT. What’s more, the influence is
non-linear, and these parameters are interactional and inter-
coupling. So it is difficult to study this by using the classical
mathematical modeling. However, the artificial neural networks
(ANNs) have the characteristic which can catch preferably non-
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Nomenclature

a actual output (experimental output)
b predicted output (network output)
c constant
K the sample number
ṁ the circulating-water flow rate . . . . . . . . . . . . L/min
m the node number in the output layer
MSE the mean square error
n1 the node number in the hidden layer
n the node number in the input layer
R the correlation coefficient
T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ◦C
�T the temperature difference . . . . . . . . . . . . . . . . . . . ◦C
V the wind velocity . . . . . . . . . . . . . . . . . . . . . . . . . . m/s
vk,j the weight between hidden layer vectors and output

layer vectors

wj,i the weight between input layer vectors and hidden
layer vectors

Greek symbols

μa mean value of a set
μb mean value of b set
θ dry bulb temperature of air . . . . . . . . . . . . . . . . . . ◦C
τ wet bulb temperature of air . . . . . . . . . . . . . . . . . . ◦C
η cooling coefficient of efficiency . . . . . . . . . . . . . . %

Subscripts

a air
in inlet
i, j, k the number of nodes
lim limit
out outlet
linear rule. And some researchers pointed out that the BP net-
work which includes one hidden layer may approach to a non-
linear function arbitrarily, that is, the three-layer BP network
may achieve the mapping from I dimension (input layer) to
K dimension (output layer) [20]. So the thermal performance
prediction of NDWCT under cross-wind conditions is done by
adopting ANN technology in this paper.

As reviewed by Kalogirou [21], the ANN models of energy
systems have been recently studied by numerous investigators
[22–27], for example, condenser, boiler, nuclear power plant,
refrigerant and heat exchanger etc. Among them, Yasar Islam-
oglu [27] used ANN model to predict heat transfer rate of
wire-on-tube heat exchanger, and received a valuable conclu-
sions. Very few researchers predicted thermal performance of
wet cooling tower by ANN technique. M. Hosoz et al. [28] com-
bined for the first time the ANN technique and performance
prediction of wet cooling tower, but they did not consider ef-
fects of cross-wind on thermal performance of wet cooling
tower. Therefore, the ANN technique is used to predict thermal
performance of wet cooling tower under cross-wind conditions
in this paper.

2. Description of experiment

The key point in this paper is developing predicted model
of BP network about wet cooling tower under cross-wind con-
ditions, so the experiment parts are briefly introduced. The
schematic diagram of experimental cooling tower is shown in
Fig. 1. The model tower, adopted in this experiment, is made to
simulate wet cooling tower of large-scale power plant according
to similarity theory. And the proportion of model and prototype
tower is 1:100. In addition, the test process also corresponds to
dynamic similarity and thermodynamic similarity besides ge-
ometry similarity. The whole experimental course simulates the
actual working process of wet cooling tower in power plant. Be-
fore doing experiments, the circulating water is heated up to the
required temperature by several heaters, and then the circulat-
Fig. 1. Schematic diagram of experimental cooling tower.

ing pump feeds the water to the overhead water tank. There
are overhead water tank and lower water tank in this system in
order to carrying out thermal state experiment and making cir-
culating system steady. During the course of experiments, the
circulating water enters into the model tower and goes through
the fills from top to bottom, while the dry air flows through the
fillings from bottom to top, and the heat and mass transfer are
finished in the course of flow.

During this test, the relative temperature about water and air
can be measured by using copper-constantan thermocouples.
The dry bulb temperature and wet bulb temperature of envi-
ronmental air are given by wet and dry bulb thermometer, and
the humidity of wet air leaving the model tower is measured
by thermo hygrometer. In addition, the wind velocity values are
measured by the KA22 type anemoscope. The main measuring
apparatuses are shown in Table 1.
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Table 1
Measuring apparatus

Item Measuring apparatus Uncertainty

Wind velocity (m/s) KA22 type anemoscope 0.01 m/s
Temperature (◦C) copper-constantan thermocouple 0.1 ◦C

wet and dry bulb thermometer 0.1 ◦C
Humidity (%) thermo-hygrometer 0.1%
Pressure (kPa) manometer 0.01 kPa
Water flow rate (L/min) rotameter 0.1 L/min

In this experiment, the volume flow rate of circulating wa-
ter is 2, 4, 6, 8, 10 and 12 L/min. Furthermore, the circulating
temperature is relatively higher in order to make the experiment
more obvious, which is 40, 45, 50 and 55 ◦C . The inlet wind ve-
locity at the windward side of tower, which is produced by the
lower fan, is 0 m/s for the windless state, 0.2, 0.3, 0.4, 0.5, 0.6
and 0.8 m/s. This wind velocity value is measured at middle
part of air inlet. According to the distribution of natural wind
above ground [29] and the vertical distance between the two
fans in this experiment, the top level wind velocity which is pro-
duced by the upper fan, is about 0 m/s for the windless state,
0.4, 0.6, 0.8, 1.0, 1.2, and 1.6 m/s. If not pointing out specially,
the wind velocity mentioned in the following text is the speed
value which is produced by the lower fan. In addition, the ex-
perimental range of dry bulb temperature is 28.5–33.5 ◦C, the
experimental range of wet bulb temperature is 23.0–27.5 ◦C.

Assuming that the other parameters, especially atmosphere
pressure and wet bulb temperature of air, are uniform, the circu-
lating water temperature difference �T and cooling efficiency
coefficient η can be considered as the performance indices of
wet cooling tower. The expressions of �T and η are given by

�T = Tin − Tout (1)

η = Tin − Tout

Tin − Tlim
= �T

Tin − Tlim
(2)

where Tin and Tout are the inlet and outlet temperature of cir-
culating water respectively, and Tlim is the cooling limit, that
is, the wet bulb temperature of inlet air. In addition, in the later
analysis, it is assured that the wet bulb temperature is invariable
for cases with any operating conditions.

3. Model of ANN

3.1. Three-layer BP network

Three-layer BP network used in this paper is shown in Fig. 2.
wj,i represents the weights between the input layer vectors and
hidden layer vectors, and vk,j represents the weights between
the hidden layer vectors and output layer vectors. The input
layer has five nodes, including dry bulb temperature of inlet
air θin, wet-bulb temperature τin, circulating water inlet temper-
ature Tin, circulating water inlet mass flow rate ṁin and inlet
wind velocity Vin. And the output layer has three nodes, in-
cluding circulating water outlet temperature Tout, temperature
difference �T and cooling efficiency coefficient η. The hidden
layer has six nodes.
Fig. 2. The structure of ANN for modeling the experimental model tower.

The network part is implemented under the Matlab environ-
ment, and the activation function is chosen as the tangent sig-
moid function in the hidden layer and the purelin function in the
output layer. There are 200 input–output pairs, thereinto, 120
pairs were employed for training set, and the remaining 80 pairs
were regarded as the testing the network. All the 200 input–
output pairs were normalized to fall in the interval [−1,1] in
order to improve the predicted agreement. The normalization
and anti-normalization functions of training data are premnmx
and postmnmx function, respectively, and the normalization
and anti-normalization functions of testing data are tramnmx
and postmnmx function. During the course of training, many
training functions can be adopted, including trainlm, traingd,
traingdm, traingdx, and traincgb and so on. It is proved that the
traingdm function adopting the gradient descent method with
momentum is used to act as the training function in this paper,
because it has higher stability and faster convergence rate [30].

In this paper, correlation coefficient (R) and mean square
error (MSE) are acted as the characteristic parameters to assess
the agreement of training and prediction. R is a measure of how
well the variation in the predicted outputs is explained by the
experimental values, and the R value between the experimental
values and predicted outputs is defined by [28]

R = cov(a, b)√
cov(a, a) · cov(b, b)

(3)

where cov(a, b) is the covariance between the a and b sets
which represent the experimental and network output sets, re-
spectively, and is given by

cov(a, b) = E
⌊
(a − μa)(b − μb)

⌋
(4)

where E is the expected value, μa and μb are the mean value of
a set and b set, respectively. In addition, cov(a, a) and cov(b, b)

are the auto covariances of a and b sets, respectively, and are
expressed by

cov(a, a) = E
⌊
(a − μa)

2⌋ (5)

cov(b, b) = E
⌊
(b − μb)

2⌋ (6)

The R values closer to +1 indicate a stronger agreement of
training and predicted values, while the values closer to −1
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indicate a stronger negative relationship between training and
prediction.

The mean square error is calculated from

MSE = 1

N

N∑

i=1

(ai − bi)
2 (7)

The less MSE is, the better fit results are.

3.2. Determination of the number of nodes in the hidden layer

The performance of an ANN is affected by the characteris-
tic of the network, such as the number of hidden layer and the
number of nodes in hidden layer. But up to now, there is not a
definite method to choose the optimal number of hidden layer
and the number of nodes in hidden layer. General speaking, the
ANN model which has one hidden layer can meet with simula-
tive requirements [20]. So the model of one hidden layer is used
in this paper.

Three formulas which are used to determine the node num-
ber in hidden layer are given by Eqs. (8)–(10) [31],
n∑

i=0

Ci
n1

> K (8)

where K is the sample number, if i > n1,C
i
n1

= 0.

n1 = √
n + m + c (9)

where c is a constant which belongs to [1,10].
n1 = log2 n (10)

When there is only one hidden layer in this ANN model,
according to Ref. [32], the calculated formula of node number
in hidden layer is defined by,

n1 = √
mn (11)

Another empirical formula is put forward in Ref. [33]. It can
be used to determine the node number in hidden layer, and the
expression is given by

n1 =
√

0.43mn + 0.12m2 + 2.54n + 0.77m + 0.86 (12)

In the above five formulas (Eqs. (8)–(12)), n1 is the node num-
ber in hidden layer, m is the node number in output layer, n is
the node number in input layer.

According to above five formulas, it is received that the
range of node number in hidden layer is from 4 to 13. The
training results are shown in Table 2, where the node number
in hidden layer is 4, 5, 6, 7, 8, 9 and 10. From Table 2, the train-
ing results have a better agreement by analyzing R and MSE
when the node number in hidden layer is 6. So the ANN model
in this paper chooses six nodes in hidden layer.

4. Results and discussion

4.1. The correlation analysis of training results by using the
developed ANN model

By many trials, the R of training results is rather closer
to +1 and the results have the least MSE when the node num-
ber in hidden layer is 6. The correlation analysis curves between
Table 2
Training results under different node number in hidden layer

Performance
parameter

Output
parameter

4 5 6 7 8 9 10

R Tout 0.992 0.998 0.999 0.998 0.997 0.995 0.991
�t 0.995 0.998 0.998 0.997 0.995 0.992 0.990
η 0.991 0.992 0.995 0.994 0.992 0.990 0.985

MSE Tout (◦C) 0.064 0.049 0.044 0.048 0.052 0.058 0.065
�t (◦C) 0.072 0.065 0.066 0.073 0.070 0.079 0.087
η (%) 0.71 0.62 0.53 0.59 0.68 0.75 0.92

Fig. 3. The ANN training values for outlet water temperature vs. the experi-
mental value.

Fig. 4. The ANN training values for temperature difference �T vs. the experi-
mental value.

the ANN training and the experimental values are described in
Figs. 3–5. Results show that the R of training and experimental
values on outlet water temperature T , �T and η is 0.999, 0.998
and 0.995. And the corresponding MSE is 0.044 ◦C, 0.066 ◦C
and 0.53%. Therefore, the R and MSE come to a higher accu-
racy. It is obvious that the training values are in good agreement
with the experimental values.
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Fig. 5. The ANN training values for cooling coefficient of efficiency η vs. the
experimental value.

Fig. 6. The ANN predicted values for outlet water temperature vs. the experi-
mental value.

It is claimed that A and T represent the network output val-
ues/(training values) and experimental values, respectively in
Figs. 3–5. And A = T represents one straight line on which the
network output values are equal to experimental values.

4.2. The correlation analysis of predicted results by using the
developed ANN model

The correlation analysis curves between the ANN predicted
values and the experimental values are shown in Figs. 6–8. Note
that in the prediction part, the comparisons were made using
values which are the remaining 80 input–output pairs.

The relational curves between the predicted outlet water
temperatures and the experimental ones are depicted in Fig. 6.
The ANN predictions for this parameter can reach to a R of
0.999, a MSE of 0.055 ◦C. Results show that the predictions
of ANN to the outlet water temperature are quite accurate and
Fig. 7. The ANN predicted values for temperature difference �T vs. the exper-
imental value.

Fig. 8. The ANN predicted values for cooling coefficient of efficiency η vs. the
experimental value.

have very good agreement according to the characteristic pa-
rameter R and MSE.

The predicted values for �T as a function of the experi-
mental ones are shown in Fig. 7. For this parameter, the ANN
comes to a R of 0.997, a MSE of 0.073 ◦C. Results demonstrate
that the predictions of ANN to the temperature difference have
better agreement. But compared with the predictions of outlet
water temperature, the ANN predictions for �T have poorer
agreement. Because �T is received from Eq. (1), it has a rela-
tively poor uncertainty. And this uncertainty affects the training
process, so leading to a slight poor agreement.

The relational curves between the predicted efficiency co-
efficients η and the experimental ones are reported in Fig. 8.
The ANN predictions for this parameter can get a R of 0.993,
a MSE of 1.04%. It is obvious that the ANN predictions for η

have poorer agreement than outlet water temperature and �T

predictions. η is received from Eqs. (1) and (2), not determined
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Fig. 9. The comparisons of predicted and experimental values about �T and η

under cross-wind conditions.

Fig. 10. The ANN predicted curves of cross-wind effect on �T and η.

directly from the measurements, so it has a relatively poor un-
certainty. But the error is still in the tolerance and the predicted
results are still right.

It is claimed that A and T represent the predicted output
values and experimental values, respectively in Figs. 6–8. And
A = T represents one straight line on which the predicted out-
put values are equal to experimental values.

5. The performance predictions by using the developed
ANN model under cross-wind conditions

In fact, an important characteristic of the ANN model is that
the developed ANN can be used to analysis the effects of the
input parameters on the outputs. In order to visualize these ef-
fects, the ANN predictions for temperature difference �T and
efficiency coefficient η as a function of the wind velocity were
indicated in Figs. 9–10. In this paper, our main intention is
studying cross-wind effects on heat and mass transfer perfor-
mance, that is, the effects of cross-wind on temperature differ-
ence and efficiency. And the effects of other input parameters
on the outputs are shown in Ref. [34].

Fig. 9 depicts the changes in the predicted values and ex-
perimental values of �T and η with respect to the cross-wind
velocity when the other four input parameters are kept constant,
that is, the circulating water flow rate and inlet water tempera-
ture are equal to 12 L/min and 45 ◦C, and the dry bulb and
wet bulb temperature of inlet air are equal to 30 and 25 ◦C.
The range of wind velocity belongs to the experimental val-
ues which are 0.2–0.8 m/s. Analysis shows that the maximum
mean absolute relative error in the predicted values and experi-
mental values of �T and η are 1.10% and 2.57%, respectively
in Fig. 9. It is also shown that the predicted values are in good
agreement with experimental values in Fig. 9.

In addition, Fig. 9 indicates that �T and η decreases firstly,
then increases with the increase of cross-wind velocity when
the other four input parameters are kept constant. Because the
cross-wind is harmful to heat and mass transfer inside cooling
tower when the wind velocity is lower, that is, a lower cross-
wind velocity destroys the well-proportioned and axisymmetric
air dynamic field at air inlet of bottom, and then reduces the
air rate inside tower, so deteriorates the heat and mass trans-
fer performance. But the cross-wind becomes helpful when the
wind velocity increase to about 0.4 m/s. Because the air rate
inside tower increases when wind velocity reaches to 0.4 m/s,
and larger wind velocity intensifies the turbulence in tower, so
enhances the heat and mass transfer performance. These results
are accordant with the literature [35]. So the ANN predicted
results to �T and η are quite right.

The parameter values in Fig. 10 are the same as those in
Fig. 9 except for the wind velocity values. Fig. 10 indicates the
ANN predicted curves of cross-wind effects on �T and η, but it
is claimed that the range of cross-wind velocity is 0.1–1.0 m/s
which is beyond the range of experimental values. Although the
agreement of the predictions can not be given, it is observed that
the ANN results in agreeable curves for the predicted parame-
ters.

In conclusions, Figs. 9 and 10 show the influences of cross-
wind on �T and η. It is concluded from these two figures that
the developed ANN model can predict the thermal performance
of natural draft wet cooling tower under cross-wind conditions.

6. Conclusions

(1) The ANN model for prediction of thermal performance
on natural draft wet cooling towers is developed successfully
in this paper, and the improved BP algorithm, the gradient de-
scent algorithm with momentum, is used in this model. In this
ANN model, the number of nodes in the input layer, hidden
layer and output layer is 5, 6 and 3. The nodes in the input layer
are dry bulb temperature of inlet air, wet-bulb temperature, cir-
culating water inlet temperature, circulating water inlet mass
flow rate and inlet wind velocity. The nodes in output layer are
circulating water outlet temperature, temperature difference and
cooling efficiency coefficient.

(2) The correlation coefficient (R) and mean square error
(MSE) are used to assess the performance of ANN model. This
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ANN model demonstrated a good statistical performance with
the correlation coefficient in the range of 0.993–0.999, and the
MSE values for the ANN training and predictions were very
low relative to the range of the experiments.

(3) In order to show the usefulness of this ANN model, the
effects of cross-wind on �T and η are predicted by using the
developed ANN model. Results indicate that the network out-
puts are in good agreement with the actual values. So this ANN
model can be used to predict the thermal performance of natural
draft wet cooling tower under cross-wind conditions.
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